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Independent Component Analysis (ICA)

Principle
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Cocktail Party Problem:

❖ You are in a room where two people are speaking simultaneously.

 

❖ How can you tell what each group of people say?

Cabrera Research
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Blind Source analysis:

o N different sound sources

o N microphones located in three different locations in the room 

o Each microphone records a sound mixing the three sound sources 

Goal: Unmix the recorded signals and estimate the original sound signals
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ICA-sound/source1.wav
ICA-sound/source4.wav
ICA-sound/source7.wav
ICA-sound/100100100mix1.wav
ICA-sound/100100100mix2.wav
ICA-sound/100100100mix3.wav
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source1

source4

source7Original Signals  - Sources (independent components)

Mixed signals picked up by 3 microphones

Reconstructed signals by ICA

http://www.cis.hut.fi/projects/ica/cocktail/100100100est1.wav
http://www.cis.hut.fi/projects/ica/cocktail/100100100est2.wav
http://www.cis.hut.fi/projects/ica/cocktail/100100100est3.wav
ICA-sound/100100100est1.wav
ICA-sound/100100100est2.wav
ICA-sound/100100100est3.wav
http://www.cis.hut.fi/projects/ica/cocktail/100100100mix1.wav
http://www.cis.hut.fi/projects/ica/cocktail/100100100mix2.wav
http://www.cis.hut.fi/projects/ica/cocktail/100100100mix3.wav
ICA-sound/100100100mix1.wav
ICA-sound/100100100mix2.wav
ICA-sound/100100100mix3.wav
ICA-sound/source1.wav
ICA-sound/source4.wav
ICA-sound/source7.wav
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Blind Source Analysis for Images
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A. M. Bronstein, M. M. Bronstein, M. Zibulevsky, "On separation of semitransparent dynamic images from static background", 

Proc. Intl. Conf. on Independent Component Analysis and Blind Signal Separation, pp. 934-940, 2006.
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4 independent sources

4 measurements: sources are mixed

4 signals de-mixed after ICA

ICA: Application to Signal Decomposition

Two of the sources are inverted
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ICA: Formalism

ICA-sound/source1.wav
ICA-sound/source4.wav
ICA-sound/source7.wav
ICA-sound/100100100mix1.wav
ICA-sound/100100100mix2.wav
ICA-sound/100100100mix3.wav
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 is the equation of a projection.

The  sources are projected through .

Each of the rows of  is a projection vector.

s

N A
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Ax =

ICA: A projection pursuit method
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How to choose the projections
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ICA is a projection pursuit method. 

It searches for interesting projections. 

• Statistically Independent

• Non-Gaussian

ICA assumes that 

the underlying sources are:

Projections convey information on the sources
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Maximizing Statistical Independence
Maximize non-Gaussianity
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The Central Limit Theorem states that, ‘the sum of several

independent random variables tends

towards a Gaussian distribution’.

The distribution of the mixed components is closer to a Gauss 
distribution than the distribution of the source components
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Non-gaussian distributions
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Lorentz distribution is a non-Gaussian Distribution

It represents well variables that are more likely to have either 

very large or very small (close to zero) values

Gaussian distribution

Lorenz distribution
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Non-gaussian distributions
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Real images are subjected to all sort of noise. The resulting (mixed) image is
a composite of the noise distribution and original image’s distribution.

A uniform blurring produces correlation

between adjacent pixels, leading to a flatter distribution  

Noisy (out of focus)      Original image 

Pdf of noisy image
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Statistical Dependency
Mutual Information
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One approach to measure statistical dependency

is through mutual information. 

( ) ( )

Mutual Information for ,  : 

( , ) ( ) ( | )

( ) log  : entropy of 

x y

I x y H x H x y

H x p x p x x

= −

= −
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Measuring non-Gaussianity: Negentropy
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Neg-entropy measures how much a distribution departs from the 
“normal” (or Gauss) distribution.

It is computed as the difference between the entropy of the equivalent 
Gauss distribution and the entropy of the true distribution

H is always positive.  H=1 for a Gauss function. (for normalize dataset) 

A value of entropy (H) < 1 means that the distribution is non-Gaussian. 

The smaller H, the more non-Gaussian.

   Negentropy: ( )   - GaussJ x H x H x=   :  Gauss distribution with 

same mean and variance as true 

distribution of .

Gauss
H x

x
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Measuring non-Gaussianity: Negentropy
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Gauss distribution and the entropy of the true distribution

H is always positive.  H=1 for a Gauss function (for normalized dataset). 

A value of entropy (H) < 1 means that the distribution is non-Gaussian. 

The smaller H, the more non-Gaussian.
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Estimating the entropy is difficult as it requires 

to estimate the distribution of the data.

   Negentropy: ( )   - GaussJ x H x H x=   :  Gauss distribution with 

same mean and variance as true 

distribution of .

Gauss
H x

x
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When data is preprocessed to be zero-mean and have unit variance, 

kurtosis is equal to the fourth moment of the data.

kurtosis measures “spikiness” 

Measuring non-Gaussianity: Kurtosis
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   ( )
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( )  -3  

(for zero-mean distribution)

( )=    

(for unit variance distribution)

kurtosis x E x E x

kurtosis x E x

=
Lorenz

Gauss

( )  0  (Gauss distribution)

( ) 0   (Spiky distribution)

( ) 0   (Flat distribution)

kurtosis x

kurtosis x

kurtosis x

=
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
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When data is preprocessed to be zero-mean and have unit variance, 

kurtosis is equal to the fourth moment of the data.

kurtosis measures “spikiness” 

Measuring non-Gaussianity: Kurtosis
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   ( )

 

2
4 2

4

( )  -3  

(for zero-mean distribution)

( )=    

(for unit variance distribution)

kurtosis x E x E x

kurtosis x E x

=
Lorenz

Gauss

( )  0  (Gauss distribution)

( ) 0   (Spiky distribution)

( ) 0   (Flat distribution)

kurtosis x

kurtosis x

kurtosis x

=





N.B.: While the ( )  3 for a Gauss distribution, we use standard notation and substraction 3 to set it to zero.kurtosis x =
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Key concepts of ICA
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What is ICA?

Dimensionality reduction 
technique

for 

Blind Source Analysis

ICA principle

Find projections in which the 
data distribution is statistically 

independent.

Non-gaussian is independent

→ maximize non-gaussiantity

Kurtosis or Negentropy
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