

APPLIED MACHINE LEARNING

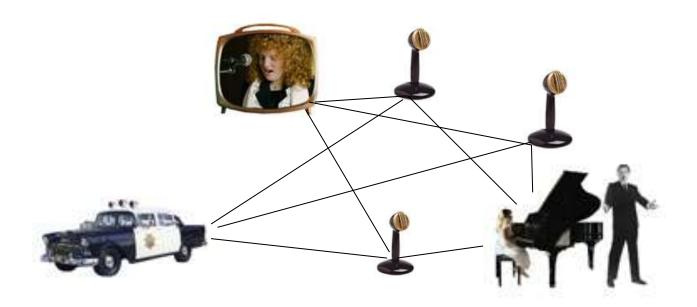
Independent Component Analysis (ICA) Principle

Cocktail Party Problem:

- ❖ You are in a room where two people are speaking simultaneously.
- How can you tell what each group of people say?

Blind Source analysis:

- N different sound sources
- N microphones located in three different locations in the room
- Each microphone records a sound mixing the three sound sources



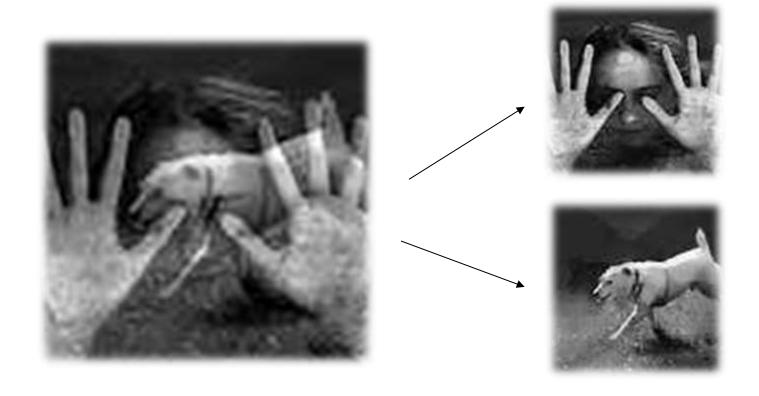
Goal: Unmix the recorded signals and estimate the original sound signals

Original Signals - Sources (independent components)

Mixed signals picked up by 3 microphones

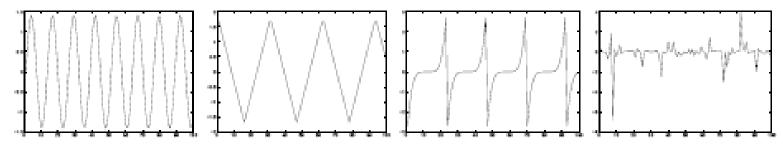
Reconstructed signals by ICA

Blind Source Analysis for Images

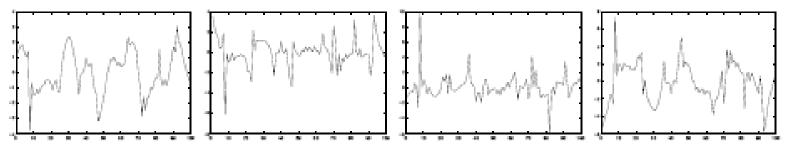


ICA: Application to Signal Decomposition

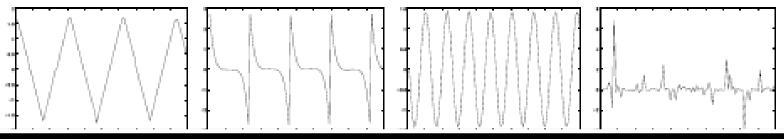
4 independent sources



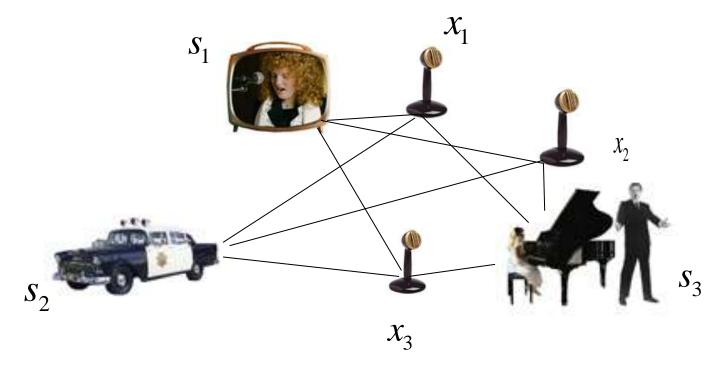
4 measurements: sources are mixed



4 signals de-mixed after ICA



ICA: Formalism



N-dimensional observation vector $x \in \mathbb{R}^N$, N = 3.

x was generated by a linear combination of N sources, $s \in \mathbb{R}^N$.

x = As, mixing matrix $A: N \times N$

ICA uncovers both *A* and *s*.

ICA: A projection pursuit method

x = As is the equation of a projection.

The *N* sources are projected through *A*.

Each of the rows of A is a projection vector.

How to choose the projections

ICA is a projection pursuit method.

It searches for interesting projections.

Projections convey information on the sources

ICA assumes that the underlying *sources* are:

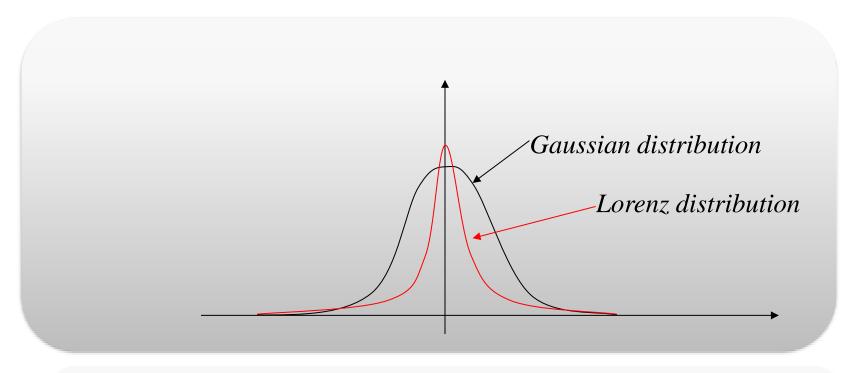
- Statistically Independent
- Non-Gaussian

Maximize non-Gaussianity

The Central Limit Theorem states that, 'the sum of several independent random variables tends towards a Gaussian distribution'.

The distribution of the mixed components is closer to a Gauss distribution than the distribution of the source components

Non-gaussian distributions

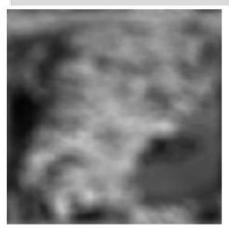


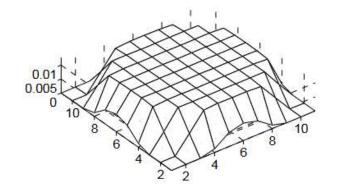
Lorentz distribution is a non-Gaussian Distribution

It represents well variables that are more likely to have either very large or very small (close to zero) values

Non-gaussian distributions

Real images are subjected to all sort of noise. The resulting (mixed) image is a composite of the noise distribution and original image's distribution.





Pdf of noisy image

Noisy (out of focus)

Original image

A uniform blurring produces correlation between adjacent pixels, leading to a flatter distribution

Statistical Dependency Mutual Information

One approach to measure statistical dependency is through mutual information.

Mutual Information for *x*, *y*:

$$I(x, y) = H(x) - H(x \mid y)$$

$$H(x) = -\int p(x) \log p(x)$$
: entropy of x

Measuring non-Gaussianity: Negentropy

Neg-entropy measures how much a distribution departs from the "normal" (or Gauss) distribution.

Measuring non-Gaussianity: Negentropy

Neg-entropy measures how much a distribution departs from the "normal" (or Gauss) distribution.

It is computed as the difference between the entropy of the equivalent Gauss distribution and the entropy of the true distribution

Negentropy:
$$J(x) = H_{Gauss} \{x\} - H\{x\}$$

 H_{Gauss} {x}: Gauss distribution with same mean and variance as true distribution of x.

H is always **positive**. **H=1 for a Gauss function** (for normalized dataset). A value of **entropy** (**H**) < **1** means that the distribution is **non-Gaussian**. The smaller H, the more non-Gaussian.

Estimating the entropy is difficult as it requires to estimate the distribution of the data.

Negentropy:
$$J(x) = H_{Gauss} \{x\} - H\{x\}$$

 H_{Gauss} {x}: Gauss distribution with same mean and variance as true distribution of x.

Measuring non-Gaussianity: Kurtosis

When data is preprocessed to be zero-mean and have unit variance, kurtosis is equal to the fourth moment of the data.

$$kurtosis(x) = E\{x^4\} - 3(E\{x^2\})^2$$

(for zero-mean distribution)

$$kurtosis(x)=E\{x^4\}$$

(for unit variance distribution)

Measuring non-Gaussianity: Kurtosis

When data is preprocessed to be zero-mean and have unit variance, kurtosis is equal to the fourth moment of the data.

$$kurtosis(x) = E\{x^4\} - 3(E\{x^2\})^2$$

(for zero-mean distribution)

$$kurtosis(x)=E\left\{x^4\right\}$$

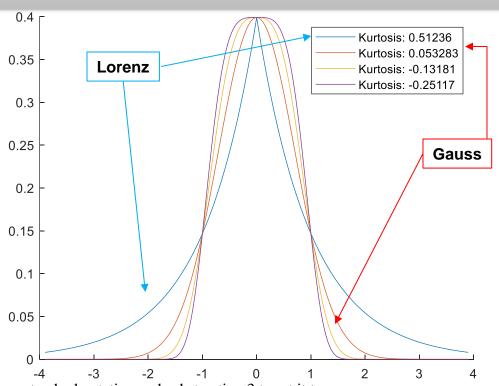
(for unit variance distribution)

kurtosis measures "spikiness"

kurtosis(x) = 0 (Gauss distribution)

kurtosis(x) > 0 (Spiky distribution)

kurtosis(x) < 0 (Flat distribution)



N.B.: While the kurtosis(x) = 3 for a Gauss distribution, we use standard notation and substraction 3 to set it to zero.

Key concepts of ICA

What is ICA?

Dimensionality reduction technique for

Blind Source Analysis

ICA principle

Find **projections** in which the data distribution is **statistically independent**.

Non-gaussian is independent

→ maximize non-gaussiantity
Kurtosis or Negentropy